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AESTRACT

The hydrostatic fluid dynamics model developed at LLL has been used
to simulate the development of katabatic winds. This model solves the
Navier-Stokes equations in the Boussinesq approximation by the finite
element method. Preliminary results indicate that to obtain physically
reasonable results one has to choose unequal diffusion parameters in the
horizontal (K ) and vertical (Kz). The maximum velocities obtained
with Kz = ?!1 m /see and Kx = 100 m2/sec are of the order of 2.5
m/see for a slope of .2. Profiles of the downslope velocities will be
presented at different points in the fluw. As expected, the magnitude of
the vertical diffusion coefficient Kz controls the depth of the flow
which seems to increase only slightly with downhill distance, and the
magnitude of the flow increases with cooling rate and slope.

~his work was performed under the auspices of the U. S. Department of
Energy by the Lawrence Livermore National Laboratory under contract No.
W-7405-Eng-48.
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TWO-DIMENSIONAL SLOPE WIND SIMULATIONS IN
THE FINITE ELEMENT APPROXIMATION

A. Introduction

Slope winds, i.e., winds produced by the sustained cooling of a
slope at night seem to be the most important ventilation mechanism in
complex terrain in the absence of strong synoptic pressure gradients, and
thus beccaneimportant for air quality models in complex terrain.

The historical development of slope winds modeling and observation
are treated in Thyer (1966) and more recently in Manins and Sawford
(1979a). The first model of slope winds was proposed by Prandtl (1942,
see Sutton 1953) and was limited by the assumption that the winds were
steady along the slope, thus reducing the problem to one dimension.
Another approach is to consider only an average flow within the cooled
layer, eliminating all internal structure of the wind field (Petkovsek
and Hocevar, 1971), This approach has been generalized by Manins and
Sawford who impose three profile factors on the flow, thus the vertical
structure of the katabatic wind field is determined a priori and the
subsequent time development of the flm is dependent on the initial guess
of these profile factors.

The third approach to the modeling of drainage is the numerical
solution of a set of primitive equations for the atmosphere. This was
first done by Thyer (1966), L. M. Leslie and K. R. Smith (1974) and more
recently by C. P. Stevens (1979). The latter calculation was only done
for one set of parameters, i.e., one slope and one cooling rate and with
closed boundaries. Yamada (1980) has applied his second order closure
model to the problem of slope winds.

In the following, I will present results for a primitive equation
model (Navier-Stokesequations in the Boussinesq approximation) solved by
a finite element numerical algorithm. In Section B I will present a
short summary of the equations. The results are discussed in Section C
where the emphasis has been on a variation of the key parameters:
diffusivity, slope and cooling rates. Finally, the conclusions drawn
from these runs and the feasibility of an extension of the model to three
dimensions will be discussed in Section D.

B. Model Equations

The model used was the LLL hydrostatic fluid dynamics model
developed by Chan et al.(1979). This model uses the Navier-Stokes
equations in the Boussinesq approximation i.e.~ in two dimensions
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Where u is the horizontal velocity, w is the vertical velocity, p the
pressure deviation from equilibrium, T is the temperature deviation from
equilibrium, P is the density, g the acceleration of gravity, y the
coefficient of thermal expansion Kx~ Kz~ K% and K; are the
momentum and temperature diffusion coefficients respectively.

To solve this system of equations in the finite element method, one
expands the
polynomials

u = Zi

w= Ei

T= Ei

P=zi

unknowns, u~ w) p?
and solves for the

ui ‘$i(x~z)

Wi $i (Xrz)

Ti @i (x/z)

pi ‘i (*fz)

and T in the equation in highly localized
expansion coefficients, i.e.

(5)

These expansions are then substituted into the original ewations and
after applying some weighted residual method (in this case, Galerkin for
equations (1) and (4), least squares for equations (2) and (3)), one
obtains a set of algebraic equations which may be solved for the
expansion coefficients. For a much more complete discussion of the
numerical methods employed, the reader is referred to Chan (1979).

The choice of the hydrostatic code for these calculations deserves
acme discussion. The non-hydrostatic FEM code has at the moment the
fundamental limitation of requiring the pressure basis functions to be
polynomials of one order lower than the basis functions for the velocity,
and temperature. This means in practice that the pressure basis
functions are restricted to be either piecewise constant or piecewise
linear polynomials. On the other hand, a linear temperature
distribution, the simplest non-trivial temperature deviation from
equilibrium, will induce a quadratic pressure variation. Trying to
represent this quadratic pressure fluctuation with either linear or
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piecewise constant pressure basis functions leads to a large error in the
pressure gradient across the grid in the presence of topography (Tuerpe,
1980). The hydrostatic fluid dynamics code has the capability of
quadratic pressure basis functions and has been used in the obtaining the
results of the next section.

c. ResU1ts

Most of the runs, with the exception of those with a different
slope, were made with the grid of Fig. 1, which has 341 node points, 11
in the vertical and 31 in the horizontal. The basis functions for all
variables are quadratic, defined on the standard 9-node element. The
boundary Conditions are-as indicated in Fig. 1, with
boundary, and a no flow bottom boundary. The bottom
cooled uniformly according

to TG = Cl sin ~
2

Where TG = ground temperature,

and t = time.

Fig. 2 shows the vector field of a typical run after
drainage layer about 100 meters high is formed above
air starts flowing down the mountain with a velocity

open top and lateral
boundary was then

about 2 hrs. A
the ground and the
of about 2-3 m/see.

In all of these runs the momentum diffusivities are-assumed to be equal
to the temperature diffusivities.

Figs. 3, 4 and 5 show the profiles of the velocity along the slope
at different points on the slope. It is seen that in all three cases the
depth of the drainage layer increases slightly with distance along the
slope and that this depth is controlled by the magnitude of Kz, i.e.,
the larger Kz, the larger the drainage layer. Fig. 6 shows the maximum
velocity within the drainage layer as a function of slope. As expected,
for the same rate of cooling of the ground, the larger the slope, the
larger the drainage velocity. Fig. 7 shows the maximum velocity along
the slope as a function of the vertical diffusivity. The falloff in the
magnitude of the velocity near the bottom of the slope occurs because the
drainage layer abruptly widens due to the change in slope at the bottom
and this effect is more pronounced for a wider initial drainage layer~
i.e., a run with a higher Kz. Fig. 8 shows the maximum velocity as a
function of various parameters. Curve 2 has the same parameters as curve
1, except plotted at a later time. Since equilibrium has not yet been
reached, the downslope velocity is still increasing, as expected. Curve
3 on Fig. 8 is the same as curve 1 except with the cooling rate doubled.

Finally, Fig. 9 shows an attempt to model upslope flow. In this run
the surface is heated, as occurs early in the morning when the sun first
begins to shine on the slope. This situatim is much more unstable than
that in which the slope was cooled. Here cool air is above warm air and
the slope changes induce instability into the flow which produce large
vertical velocities. It is not quite clear whether these large vertical
velocities in the model run come about because of the nature of the
hydrostatic approximation, which breaks down at points of high vertical
acceleration, or whether they are a realistic consequence of the physics
of this highly unstable situation.
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D. Conclusions

The results reported in this paper have demonstrated that the finite
element approximation is useful for solutions of the Navier-Stokes
equations with atmospheric ap@ications, provided one has chosen
quadratic or higher order polynomials as the pressure basis functions
when atmospheric process over complex terrain are modeled. Detailed
comparison of these two-dimensional results to experiment, other than
very qualitative observations, are not appropriate, since two-dimensional
slopes do not usually occur in nature. However, the orders of magnitude
of the velocity (2-4 m/see) compares well with the results of the 1979
ASCOT Geysers experiment and the measurements of Manins and Sawford
(1979b). The vertical profile of the drainage velocity is very similar
to that measured by Manins and Sawford, but differs with the 1979 Geysers
data where the profile is much broader than in the present calculations.
This might be due to a canopy drag factor, neglected in the present
model. Yamada (1980) appears to obtain broader profiles when such a
canopy drag factor is included. In addition, the terrain in the Geysers
is very complex, while the site for the Manins and Sawford experiment was
close to an idealized two-dimensionalslope.

The calculations reported here were done as an intermediate step to
the development of a three-dimensionalatmospheric dynamics code valid in
complex terrain. One should also investigate the validity of the
hydrostatic approximation for slope winds. Here the requirement of a
quadratic pressure basis function in the finite element approximation
causes acme difficulty, since the velocity and temperature basis
functions should be one order higher than the pressure basis functions
for a nonhydrostatic formulation. This would mean that the basis
functions for the velocity and temperature would have to be cubic,
however, mesh generators for grids appropriate to cubic basis functions
do not exist. One approach to overcome this would be to construct an
‘almost” nonhydrostatic code by reinserting the vertical acceleration
terms but not the diffusion terms into the hydrostatic formulation. This
procedure also allows one to retain the simple boundary conditions of the
hydrostatic code. Another approach would simply be to ignore the bad
pressure solution obtained with a nonhydrostatic fluid dynamics code
where the pressure and velocity basis functions are of the same order.
Here the spurious part of the pressure solution does not act as a driving
term for the velocity.

Both the development of the 3-D hydrostatic fluid dynamics code and
the reformulationof the nonhydrostatic code as a check on the validity
of the hydrostatic approximation are being implemented at LLL.
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Figure Captions

Figure 1. The grid used in the model runs for a slope of .2. Boundary
conditions are indicated on the figure.

Figure 2. A typical vector flm-field at t = 6800 see, Xx = K~ .
100 m2/see, Kz = KZT = 1 m2/see, TG = -20 sin t/27000, slope = .2.

Figure 3. Profile of the velocity along the slope, same parameters as
figure 2 except for K~ = Kz = .1 m2/sec and t = 4153 sec.

Figure 4. Profile of the velocity along the slope, same parameters as
Fig. 3 except Kz = K* = 1.O m2/sec0

Figure 5. Profile of velocity along the slope, same parameters
except K= = K~ = 5.0 m2/sec.

Figure 6. Maximum velocity along the slope as a function of Kz
TG = -20 sin t/27000, t = 4100
slope = .2

see, Kx =K~= 100 m2/see,

Curve 1: Kz = K; = .1 m2/sec

CUrVe 2: K= = Kg = 1.0

Curve 3: K= = K% = 5.0

Figure 7. Maximum velocity
TG = -20 sin t/27000, t
Kz =K~= 1.0

Curve 1: slope = .1
Curve 2: slope = .2
Curve 3: slope = .3

m2/sec

m2/sec

as Fig. 3

alonq the slo~ as a function of slope.
= 41~0 see, Kx = K# = 100 m2/sec

along the slope as a function of time andFigure 8. Maximum velocity
cooling rate.

Kx = K$ = 100 m2/see, Kz = K~ = 1 m2/see, slope = .2

Curve 1: TG = -20 sin t/2700,
Curve 2: TG * -20 sin t/2700,
Curve 3: TG = -40 sin t/2700,

Figure 9. Upslope wind after 2700
K! . 100 m2/see, Kz = K: = 1 m2/sec.

t = 4058 sec
t = 6800 sec
t = 4092 sec.

sec. TG = 20 sin t/2700, Kx =
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